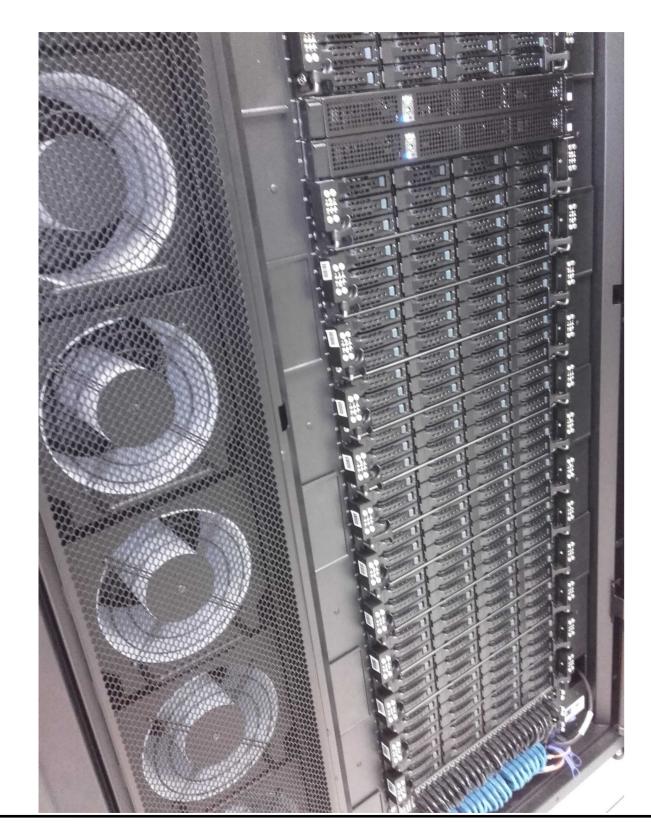


Séminaire SFR: Gestion des données de la Recherche

Le 03 Octobre 2025 – Audrey Bihouée



Ordre du jour

- Généralités sur le calcul scientifique
- Le projet DACAS et GLiCID : historique et actualités
- Le stockage sur une infrastructure de calcul
- Modèle économique de GLiCID

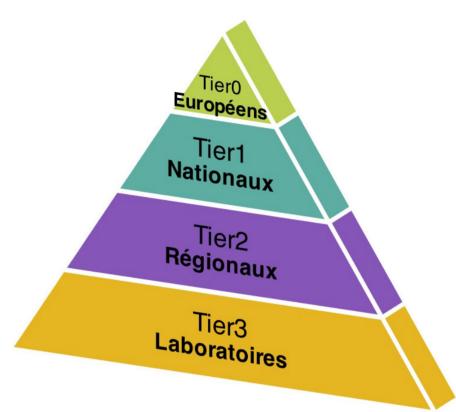
Quelques généralités sur le calcul scientifique

Le calcul scientifique concerne :

- Historiquement, principalement les domaines comme la Physique, la Mécanique, les Géosciences, l'Astrophysique, la Chimie...
- Depuis une dizaine d'années, on constate de nouveaux acteurs comme la Biologie, l'Économie, les Sciences Sociales, les Langues... toutes les communautés scientifiques sont concernées

Les besoins explosent :

- en calcul distribué classique (CPU, cœurs)
- en calcul avec accélérateurs (GPU)
- en stockage de données associées
- Il y a eu beaucoup de changements dans le domaine du HPC, en particulier sur le public concerné



Le calcul scientifique en Europe

- Organisé en Tier
- Quelques exemples (en 2019)
 - Tier0: SuperMUC-NG (Allemagne) ~ 300 000 cœurs
 - Tier1: IDRIS (Jean Zay) ~85 000 cœurs; ~ 3000 GPU
 - Tier2 : GLiCID
 - 16300 cœurs, 100To de RAM, 80 GPU, 1.5Po de stockage rapide et 4Po de stockage tiède CEPH
- Missions des Tier2: développement, petite production, formation, mutualisation, proximité, flexibilité

Labellisation et DACAS

- Origine: volonté du MESRI depuis 2016 de labelliser un datacenter par Région pour les équipements ESR
- Objectifs: rationalisation (fermer 90 % des salles informatiques ESR)
- Contrainte : l'ensemble des projets d'équipements financés ou co-financés par des fonds publiques devront être hébergés dans ces datacenters mutualisés (issus de tout projet PIA, ANR, FUI, Horizon, ...)
- Réponse pour les Pays de La Loire : le projet DACAS
- Le DataCenter UN et le projet DACAS ont été labellisés INFRANUM le 10/11/2020

CPER: Data center, Réseau, Calcul

Projet soumis au CPER 2021-2027

Porteurs: Yann Capdeville, Nicolas Wendling / Stéphane Amiard et Thierry Oger

3 volets:

- Datacenter (DACAS, budget 10M€)
- Calcul scientifique (GLiCID 6M€)
- Réseau (RRTHD, 4M€)

Partenaires:

- Datacenter et Réseau : Universités de Nantes, du Mans et d'Angers ; création du Service Inter Établissement Numérique (SIEN) voté par les 3 CA le 4/11/2021
- GLiCID: Universités de Nantes, du Mans et d'Angers et l'École Centrale

L'ensemble du projet a été financé par le CPER pour un montant total de 20M€

Calcul scientifique : état des lieux en Pays de la Loire en 2020

5 acteurs principaux:

- CCIPL (UN)
- BiRD (INSERM, UN, Biologie)
- ICI (ECN)
- MathStic (UA)
- INFRALAB (LMU)

	Utilisateurs actifs	CPU cœurs	GPU	CPU.h (10 ⁶ h)
CCIPL	155	5500	27	28.4
BiRD	142	450	9	1.5
ICI	130	6300	18	19
UA	30	1000	10	8.4
LMU	~50	1900	90	1

Projet GLiCID

- Objectifs principaux du projet :
 - n'avoir qu'un seul acteur calcul Tier2 en Région
 - avoir plus de ressources et de services pour un coût équivalent
 - Mutualiser les ressources et les RH

Dans le cadre du CPER 2021-2027

- GLiCID est la partie calcul HPC du projet DACAS+réseau
- Établissements : UA, LMU, NU, Centrale Nantes, Inserm
- Porteur : Yann Capdeville
- Responsables par partenaire :
 - Yann Capdeville (CCIPL)
 - Luisa Rocha da Silva (ICI, ECN)
 - Audrey Bihouée (BirD/SFR F.Bonamy, INSERM, UN)
 - Frédéric Saubion (UA)
 - Sylvain Meigner (LMU).
- Budget et équipements demandés : 6M€

pour >12000 cœurs, >100 GPU type A100, >8Peta octets de stockage

Site web: www.glicid.fr

Unité de service GLiCID

Missions de GLiCID:

- Fournir des moyens de calcul aux chercheurs de la Région et leurs partenaires sans se limiter aux « gros » calculs
- Proposer un volume de stockage de données associées au calcul suffisant
- Apporter un support au développement et une veille technologique
- Proposer des formations au HPC et aux outils s'y rapportant
- Garder une forte proximité avec les utilisateurs
- Participer aux projets nationaux (EQUIPEX+: MUDIS4LS, MESONET)

Les ressources actuelles

Equipement	Sources de financement	CPU	RAM	GPU
Cluster NAUTILUS	CPER DACAS 1ère Tranche	5376 cœurs AMD Genoa	28 To	16 GPU A100-80Go, 8 GPU A40
Cluster WAVES	CPER CCIPL (2016-2022)	6712 cœurs	66To	24 GPU A100-40Go, 8 GPU A40, 18 GPU T4
Cluster PHILEAS	EQUIPEX MESONET	3072 cœurs Intel Sapphire rappids	16To	
BigMem (3 noeuds)	BiRD - EQUIPEX MUDIS4LS	200 coeurs	10 To	
Cloud OpenStack	MUDIS4LS	512 coeurs	4 To	
(A venir)	MUDIS4LS	512 coeurs	4 To	
Stockage 5 Po (scratch + projets)	Multiples : CPERs + MUDIS4LS			

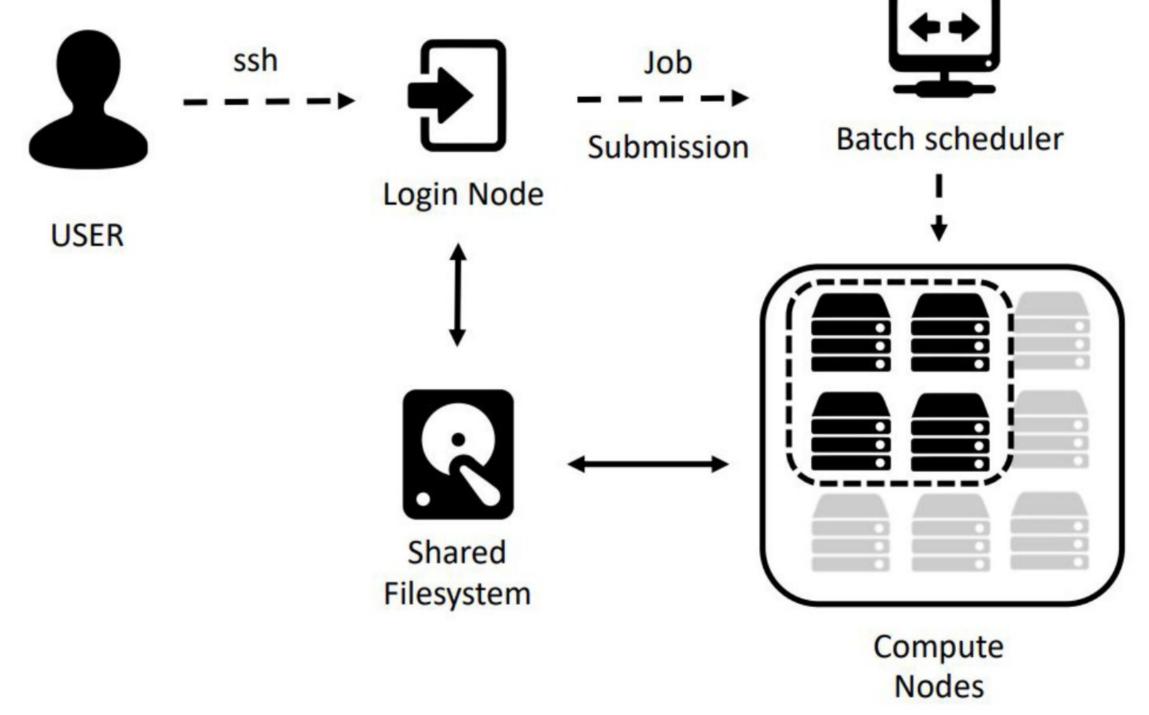
2ème tranche du CPER (Livraison Juin 2026) :

- Enquête des besoins auprès des utilisateurs en Juin 2025 (besoin important de GPU)
- La consultation des fournisseurs va commencer (DELL lot serveurs du nouveau marché MatInfo)
- Dépendant de l'ouverture du DataCenter DACAS : Tout le nouveau matériel devra y aller

Datacenter

Printemps 2026

- Les travaux de construction de DaCaS sont en cours
- Pas de retard prévu actuellement
- Le renouvellement de la labellisation INFRANUM est en cours



Principe d'un cluster de calcul

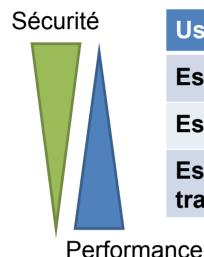
Source : Junaid MIR (Ecole Centrale de Nantes), Pierre-Emmanuel GUÉRIN (Ecole Centrale de Nantes)

Stockage sur un cluster de calcul

Performance vs Sécurité

- Une infrastructure de calcul nécessite une solution de stockage performante :
 - accès massivement parallèle aux données
 - disques rapides
- Pour gagner en performance, on désactive les mécanismes de sécurité :
 - Moins voire pas de snapshots
 - Pas de réplication
 - Pas de sauvegarde
- Pour gagner en sécurité, on réduit la performance
- A capacité identique, le coût d'une infrastructure performante et d'une infrastructure sécurisé est le même

Source: https://moodle.france-bioinformatique.fr/pluginfile.php/360/course/section/57/Module_2.pdf



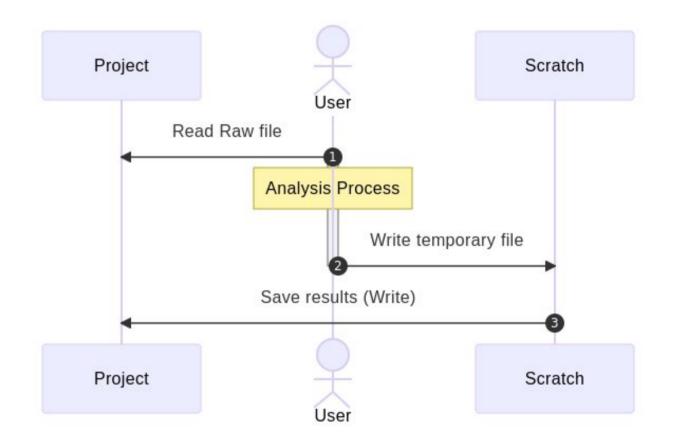
23

Stockage sur un cluster de calcul

Usage	Espace de travail	Quota	Sauvegarde
Espace perso	/LAB-DATA/GLiCID/users	ЗТо	A venir (€)
Espace projet	/LAB-DATA/GLiCID/projects	A la demande (€)	A venir (€)
Espace temporaire de travail	/scratch	Pas de quota, nettoyé régulièrement	Non

- Espace projet : Stockage volumétrique 1Po (2023)-> 4Po (2028)
- Stockage sécurisé = Stockage distribué (CEPH)
- Aujourd'hui: 3 points géographiques: LPG, Datacenter Lombarderie, ECN
- A terme : 3 salles différentes dans DACAS
- Tolérance élevée aux pannes (disques)

• Pas de sauvegarde automatique. Backup possible sur demande (€)



En (bonne) pratique

- Transfert des données [protocole SSH]
 - (quasi)automatique depuis les équipements producteur de données (Séquenceur, Microscopes...)
 - ou depuis poste de travail
- 1) Copie des données brutes sur espace projet
- 2) Calcul/Ecriture sur espace scratch lors de l'analyse
- 3) Transfert des résultats importants sur espace projet
- Une organisation par projet
 - Avec des méta-données/nommage ad hoc

GliCID: Le modèle économique

Objectifs : garder le modèle accessible à tous, tout en finançant au moins les postes GLiCID sur fonds propres.

- Heures de calculs
 - Au moins 60 % des ressources sur GLiCID accessible (sur projet) sans contre partie financière
 - Une partie des ressources achetée par les projets financés de recherche sous forme d'heures prioritaires
 - Une partie des ressources vendue aux établissements externes et au privé (max 20%)
- Stockage de données :
 - Pour les ayants droits : 3To de base sans contre partie financière
 - Payant au To par année au-delà. Tarifs différents entre les ayants droits, le privé etc.

Il est important pour la pérennité de GLiCID que tout le monde prévoit des financements (Prestation) dans ses projets pour les ressources de calcul et de stockage.

Merci de votre attention

<u>Directeur</u>: Yann Capdeville (CNRS-NU)

<u>Co-directrices.eurs</u>:

Luisa Rocha da Silva (ICI, ECN)

Audrey Bihouée (UN)

Frédéric Saubion (UA)

Sylvain Meigner (LMU)

Gestionnaire:

Corine Rossollin Varipatis

Equipe Technique

Pierre-Emmanuel Guérin	IGR, ECN	1 ETP CDI	Ingénieur système et réseau
Pablo Bondia-Luttiau	IGR, ECN	1 ETP CDD	Ingénieur système et réseau
Alexandre Lascaux	IGR, ECN	1 ETP CDD	Ingénieur système et réseau
Thomas Dronet	IGR, ECN	1 ETP CDD	Ingénieur système et réseau
Yann Dupont	IGR, NU	0.8 ETP	Ingénieur système et réseau
Jean-Francois Guillaume	IGR, BiRD-SFR, NU	1 ETP CDI	Ingénieur système et réseau
Guy Moebs	IGR, CNRS-LPG	0.5 ETP	Ingénieur calcul scientifique
Julien Drouin	IGR, LMU	0.5 ETP	Ingénieur système et réseau
Aymeric Blondel	IGE, CNRS-CEISAM	0.4 ETP	Ingénieur calcul scientifique
Jérome Coatanéa	IGE, NU	0.1 ETP	Ingénieur système et réseau
Jean-Christian Feufeu	IGE, NU	0.1 ETP	Ingénieur système et réseau
Benoit Seignovert	IGR, CNRS-Osuna	0.1 ETP	Spécialiste données
Damien Fligiel	IGE, CNRS-OSUNA, NU	0.1 ETP	Ingénieur système et réseau
A recruter	IGR, UA	0.7 ETP	Ingénieur système et réseau

